
www.manaraa.com

The Computer Journal, Vol. 47 No. 6, © The British Computer Society; all rights reserved

Some Further Theoretical Results
about Computer Viruses

Zhihong Zuo and Mingtian Zhou

School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu, P.R. China

Email: zhzuo@263.net

In this paper we give some general definitions of computer viruses which comply with our common
understanding of computer viruses. Based on these definitions, we prove theoretically that there
may exist some special kinds of computer viruses that have not been found in the real world yet.
Furthermore, we prove that the set of computer viruses with the same kernel is

∏
2-complete. In

general the set of computer viruses is
∑

3-complete.
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1. INTRODUCTION

The first abstract theory of computer viruses is the viral set
theory given by Cohen, based on the Turing machine [1, 2].
A viral set is defined by (M, V ) where M is a Turing machine
and V is a non-empty set of programs on Turing machine.
Each v ∈ V is called a computer virus and satisfies the
following condition: if it is contained in the tape at time
t , then there exist a time t ′ and a v′ ∈ V such that v′ is
contained in the tape at time t ′. The most important of
Cohen’s theorems is about the undecidability of computer
viruses [1].

In a different approach, Adleman developed an abstract
theory of computer viruses based on recursive functions [3].
In his definition a virus is a total recursive function v which
applies to all programs i (the Gödel numberings of programs),
such that v(i) has some characteristic behaviors of computer
viruses like injury, infection and imitation. Furthermore,
Adleman proved that the set of computer viruses is

∏
2-

complete [3].

In the past 10 years, the number and variety of computer
viruses have greatly increased, and many of them may
not be conveniently and directly described by Cohen’s or
Adleman’s theory. For example, we can list resident viruses,
polymorphic viruses, stealthy viruses and so on. Hence some
other models and theories of computer viruses have been
established [4]. But these models do not comply with the
common understanding of computer viruses.

The structure of this paper is as follows: the next
section introduces preliminaries and recursive-function-
based definitions for several kinds of computer viruses are
presented in Section 3. In Section 4, we derive some
important results about computer viruses based on the
definitions. In the last section, we discuss the limitations
of our work and give some comments and suggestions for
further research.

2. PRELIMINARIES

We briefly present here basic notation used in this paper.
Let N be the set of all natural numbers and S

be the set of all finite sequences of natural numbers.
For every s1, s2, . . . , sn ∈ S, 〈s1, s2, . . . , sn〉 denotes a
computable injective function from Sn to N with computable
inverse. If f is a partial function f : N → N ,
then for s1, s2, . . . , sn ∈ S, f (s1, s2, . . . , sn) denotes
f (〈s1, s2, . . . , sn〉). Similarly, for every i1, i2, . . . , in ∈
N , 〈i1, i2, . . . , in〉 denotes a computable injective function
from Nn to N with computable inverse such that
〈i, j〉 ≥ i, and f (i1, i2, . . . , in) means f (〈i1, i2, . . . , in〉)
for partial function f : Nn → N . Furthermore, we write
f (i1, i2, . . . , in) ↓ when f (i1, i2, . . . , in) is defined and
f (i1, i2, . . . , in) ↑ when f (i1, i2, . . . , in) is undefined.

For a sequence p = (i1, i2, . . . , ik, . . . , in) ∈ S, we
use p[jk/ik] to denote the sequence which is the same
as p except that ik replaced by jk , i.e. p[jk/ik] =
(i1, i2, . . . , jk, . . . , in). If the element ik in sequence p is
operated by a computable function v, namely p[v(ik)/ik], for
conciseness of notation, it will always be written in this paper
as p[v(ik)] where the underlined symbol denotes the element
being operated. If there are more than one element in p that
have been replaced by other values or operated by computable
functions, we write them as p[jk1/ik1 , jk2/ik2 , . . . , jkl

/ikl
]

or p[v1(ik1), v2(ik2), . . . , vl(ikl
)], respectively.

The symbol φP (d, p) denotes a function computed by a
computer program P with the running environment (d, p)

where d and p mean data (including clock, spaces of diskettes
and so on) and programs (including operating systems),
respectively. If the Gödel numbering of P is e, the function
is commonly written as φe(d, p). Its domain and range are
written as We and Ee, respectively.

S–m–n theorem, universal theorem and recursion
theorem [5] are the main tools used in our development of
the abstract theory of computer viruses.
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3. DEFINITIONS OF SOME KINDS OF
COMPUTER VIRUSES

In this section, we give definitions of some kinds of
computer viruses, including not only some common kinds
of computer viruses, e.g. non-resident viruses and resident
viruses, but also some special kinds of computer viruses, e.g.
polymorphic viruses with infinite forms which have not been
found till now in the real world.

Definition 3.1. (Non-resident virus) A total recursive
function v is called a non-resident virus if for all i,

(a) φv(i)(d, p)

=



D(d, p), if T (d, p) (i)

φi(d, p[v(S(p))]), if I (d, p) (ii)

φi(d, p), otherwise (iii)

(b) T (d, p) and I (d, p) are two recursive predicates and
no 〈d, p〉 satisfies them simultaneously; D(d, p) and
S(p) are two recursive functions;

(c) the set {〈d, p〉 : ¬(T (d, p)∨I (d, p))} is an infinite set.

The two predicates, T (d, p) and I (d, p), are called injury
condition (trigger) and infection condition, respectively.
When condition T (d, p) is satisfied, the virus executes
the injury function D(d, p), and when condition I (d, p)

is met, the virus chooses a program using the selection
function S(p), infects it first, and then executes the original
program. These two conditions and two functions, called
the kernel of a non-resident virus, determine a non-resident
virus uniquely. In what follows, unless stated otherwise,
the kernel of a computer virus always denotes the set
of mathematical objects (functions and predicates) which
theoretically determine a computer virus uniquely.

In clause (a) of the above definition, three branches (i), (ii)
and (iii) describe three typical behaviors of computer viruses,
injury, infection and imitation, respectively.

In the following definitions of other kinds of computer
viruses, we no longer list (b) and (c) as in the definition above,
and always regard them as satisfied by each kind of computer
virus. It should be noted that the kernels of different kinds of
computer viruses are different in general.

Definition 3.2. (Resident virus) The pair (v, sys) of
a total recursive function v and a system call sys (also a
recursive function) is called a resident virus with respect to
the system call sys if for all i,

φv(i)(d, p) =



D(d, p), if T (d, p)

φi(d, p[v(sys)]), if I (d, p)

φi(d, p), otherwise

and

φv(sys)(d, p) =



D′(d, p), if T ′(d, p)

φsys(d, p[v(S(p))]), if I ′(d, p)

φsys(d, p), otherwise

Resident viruses always employ some system calls or
endless execution processes (e.g. under Unix) to reside in

the memory and modify some system calls (or some user
processes) by which they infect other programs. For example,
resident viruses in the DOS environment often modify system
calls such as int 21h and int 13h to reach their objects.

Definition 3.3. (Polymorphic virus with two forms) The
pair (v, v′) of two different total recursive functions v and v′
is called a polymorphic virus with two forms if for all i,

φv(i)(d, p) =



D(d, p), if T (d, p)

φi(d, p[v′(S(p))]), if I (d, p)

φi(d, p), otherwise

and

φv′(i)(d, p) =



D(d, p), if T (d, p)

φi(d, p[v(S(p))]), if I (d, p)

φi(d, p), otherwise

Polymorphic viruses with n forms can be defined as
sequences (v1, v2, . . . , vn) of n different total recursive func-
tions which satisfy similar conditions as the above definition.
Polymorphic viruses have become transplanted over last 10
years and detecting them involves considerable difficulty.
Commonly they have billions of forms and no two forms
have the same consecutive three bytes in general. However,
they are not the most difficult viruses to detect. In what fol-
lows, we define the polymorphic viruses with infinite forms,
and prove their existence theoretically in the next section.

Definition 3.4. (Polymorphic virus with infinite forms) A
total recursive function v(m, i) is called a polymorphic virus
with infinite forms if for all m, i,

φv(m,i)(d, p) =



D(d, p), if T (d, p)

φi(d, p[v(m + 1, S(p))]), if I (d, p)

φi(d, p), otherwise

and for all m 
= n, v(m, i) 
= v(n, i).

Polymorphic viruses with infinite forms have not actually
been found so far, but their existence, similar to common
computer viruses, is guaranteed by the same mathematical
theorem (recursion theorem).

Definition 3.5. (Stealthy virus) The pair (v, sys)of a total
recursive function v and a system call sys is called a stealthy
virus with respect to the system call sys if there is a recursive
function h such that for all i,

φv(i)(d, p) =



D(d, p), if T (d, p)

φi(d, p[v(S(p)), h(sys)]), if I (d, p)

φi(d, p), otherwise

and

φh(sys)(x) =
{
φsys(y), if x = v(y)

φsys(x), otherwise

The crucial distinction between stealthy viruses and
common viruses is that stealthy viruses not only infect
programs as common viruses do, but also modify some
system calls such that, when someone or the computer system
uses these system calls to check programs, the infected
program appears the same as if it were not infected.
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Definition 3.6. (Combinatorial virus) The pair (a, h) of
two total recursive functions a and h is called a combinatorial
virus if for all i,

φah(i)(d, p)

=



D(d, p), if T (d, p)

φi(d, p[ah(S1(p)), h(S2(p))]), if I (d, p)

φi(d, p), otherwise

and

φh(i)(d, p) = φi(d, p)

where the two total recursive functions a and h are called the
activation function and the hiding function, respectively.

The combinatorial virus (a, h1, . . . , hn) with n hiding
functions can be defined similarly to the above. The
extraordinary feature of combinatorial viruses is that they
imitate totally original programs and do not make any
injury and infection unless their activation functions apply
to them.

4. SOME THEOREMS ABOUT COMPUTER
VIRUSES

In this section, we use some symbols listed as follows.

Symbols 1.

Dn = {i : φi is a non-resident virus}
Dr = {〈i, j〉 : (φi, φj ) is a resident virus}
Dp = {〈i1, . . . , in〉 : (φi1 , . . . , φin) is a polymorphic virus
with n forms}
Di = {i : φi is a polymorphic virus with infinite forms}
Ds = {〈i, j〉 : (φi, φj ) is a stealthy virus}
Dc = {〈i, j〉 : (φi, φj ) is a combinatorial virus}

If the superscript ‘fixed’ is attached to a symbol above,
then it denotes the set of one kind of viruses which have a
fixed kernel, e.g. Dfixed

r denotes the set of all resident viruses
that have a fixed kernel. If its superscript is a name of a virus,
e.g., DJerusalem, then it denotes the set of all viruses which
have the same kernel as the Jerusalem virus.

Theorem 4.1. There exist polymorphic viruses with
infinite forms.

Proof. Let b(m, i, k) be a 1-1 total recursive function
such that

φb(m,i,k)(d, p) =



〈m, p〉, if T (d, p)

φi(d, p[φk(m + 1, S(p))]), if I (d, p)

φi(d, p), otherwise

Applying the s–m–n theorem to b(m, i, k), there exists a total
recursive function f such that

φf (k)(m, i) = b(m, i, k).

By the recursion theorem, there is an n such that φf (n) = φn.
Let v(m, i) = b(m, i, n) = φf (n)(m, i) = φn(m, i), so

φv(m,i)(d, p) = φb(m,i,n)(d, p)

=



〈m, p〉, if T (d, p)

φi(d, p[φn(m + 1, S(p))]), if I (d, p)

φi(d, p), otherwise

=



〈m, p〉, if T (d, p)

φi(d, p[v(m + 1, S(p))]), if I (d, p)

φi(d, p), otherwise

Notice that if m 
= n, then for all i, and all d, p such that
T (d, p) holds,
φv(m,i)(d, p) = 〈m, p〉 
= 〈n, p〉 = φv(n,i)(d, p)

i.e. v(m, i) 
= v(n, i).

Theorem 4.2. There exist combinatorial viruses.

Proof. Let h be a recursive function such that φh(i)(d, p) =
φi(d, p). Applying the s–m–n theorem, there exists a total
recursive function b(i, k) such that

φb(i,k)(d, p)

=



D(d, p), if T (d, p)

φi(d, p[φk(h(S1(p))), h(S2(p))]), if I (d, p)

φi(d, p), otherwise

By the recursion theorem, as in Theorem 4.1, there exists a
total recursive function v such that

φv(i)(d, p)

=



D(d, p), if T (d, p)

φi(d, p[v(h(S1(p))), h(S2(p))]), if I (d, p)

φi(d, p), otherwise

Let a = v, substituting i by h(i) in the above equation, it
follows that

φah(i)(d, p)

=



D(d, p), if T (d, p)

φh(i)(d, p[a(h(S1(p))), h(S2(p))]), if I (d, p)

φh(i)(d, p), otherwise

=



D(d, p), if T (d, p)

φi(d, p[a(h(S1(p))), h(S2(p))]), if I (d, p)

φi(d, p), otherwise

In fact, we proved that there exists a combinatorial
virus (a, h) for any padding or compressing program h in
Theorem 4.2.

The proofs of existence of other viruses are similar to the
proof above, thus we omit them here. One thing necessary
to know is that proofs of existence of resident viruses,
polymorphic viruses and stealthy viruses will make use of
the double(or multi-) recursion theorem.

Theorem 4.3. The set D
f ixed
n is a

∏
2-complete set.
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Proof. Suppose recursive predicates T (d, p) and I (d, p) are
the injury condition and the infection condition, and recursive
functions D(d, p) and S(p) are the injury function and the
selection function, respectively. Then, since

e ∈ Dfixed
n

⇐⇒ φe is a total recursive function∧
∀i∀d, p[[

T (d, p) → φφe(i)(d, p) = D(d, p)
]

∨ [
I (d, p) → φφe(i)(d, p) = φi(d, p[φe(S(p))])]

∨ [¬(T (d, p) ∨ I (d, p)) → φφe(i)(d, p) = φi(d, p)
]]

and ‘φe is a total recursive function’ is a
∏

2- predicate, and
‘φx(z) = φy(z)’ is a

∑
1-predicate, so ‘e ∈ Dfixed

n ’ is a∏
2-predicate.
To prove Dfixed

n is a
∏

2-complete set, without loss of
generality, we suppose that viruses do not make any injury
and their infection condition is I (d, p).

Let A be an
∏

2-set, then there exists a recursive predicate
R such that x ∈ A ⇔ ∀y∃zR(x, y, z).

Consider the function

f (i, k, x, 〈d, p〉)

=




φi(d, p[φk(S(p))]), if I (d, p)

φi(d, p), if ¬I (d, p) ∧ ∀y

< 〈d, p〉∃ zR(x, y, z)

↑, otherwise

By Church’s thesis, it is a recursive function: suppose
P(x, y, z) is the procedure computing the character-
istic function of predicate R(x, y, z). For a given
(i, k, x, 〈d, p〉), first test the recursive predicate I (d, p);
if it is true, then compute φi(d, p[φk(S(p))]); if
it is false, then compute P(x, 0, 0),. . .,P(x, 〈d, p〉, 0),
P(x, 0, 1), . . .,P(x, 〈d, p〉, 1),. . .. If for each y < 〈d, p〉,
there exists an n in this sequence such that P(x, y, n) =
1, then stop the computing procedure to compute
φi(d, p); otherwise, the procedure cannot stop, so function
f (i, k, x, 〈d, p〉) ↑.

Applying the s–m–n theorem to f (i, k, x, 〈d, p〉),
there exists a recursive function b(i, k, x) such that
φb(i,k,x)(d, p) = f (i, k, x, 〈d, p〉). By the recursion theorem
with parameters, there exists a recursive function n(x) such
that φn(x)(i) = b(i, n(x), x), i.e.

φφn(x)(i)(d, p)

= φb(i,n(x),x)(d, p)

=




φi(d, p[φn(x)(S(p))]), if I (d, p)

φi(d, p), if ¬I (d, p) ∧ ∀y

< 〈d, p〉∃zR(x, y, z)

↑, otherwise

Thus, if x ∈ A, then

x ∈ A ⇒ ∀y∃zR(x, y, z)

⇒ φφn(x)(i)(d, p)

=
{
φi(d, p[φn(x)(S(p))]), if I (d, p)

φi(d, p), otherwise

⇒ n(x) ∈ Dfixed
n

On the other hand, assume x 
∈ A, then ∃y∀z¬R(x, y, z).
Since, for each e ∈ Dfixed

n , there exist infinite numbers
of 〈d, p〉 such that φφe(i)(d, p) = φi(d, p), it follows
that there exists a large enough 〈d ′, p′〉 such that ∃y <

〈d ′, p′〉∀z¬R(x, y, z), hence for all i, φφn(x)(i)(d
′, p′) ↑.

Assume φi is a total recursive function, then for all e ∈ Dfixed
n ,

φφe(i)(d
′, p′) = φi(d

′, p′) is defined at each 〈d ′, p′〉, hence
n(x) 
∈ Dfixed

n .
According to the above discussion, it follows that

A ≤m Dfixed
n ,

i.e. Dfixed
n is a

∏
2-complete set.

In the following proof, we shall use the lemma below.

Lemma 4.1. For a given recursive set R, if its complement
R is an infinite set, then there exists a recursive function g

such that for all
∑

3-set A,

x ∈ A ⇒ [Wg(x) is a recursive set ] ∧ [R ⊆ Wg(x)]
x 
∈ A ⇒ [Wg(x) is not a recursive set ] ∧ [R ⊆ Wg(x)]

Proof. Let W 0
g(x) = R in the proof of theorem 3.4 in chapter

IV in [6].

Theorem 4.4. Dn is a
∑

3-complete set.

Proof. By the definition ofDn, we can establish the following
logical equivalence,

e ∈ Dn

⇐⇒ φeis a total recursive function∧
∃t∃i∃o∃b∃s

[[Wt , Wi , Wo are recursive sets]
∧ [Wt , Wi , Wo are pairwise disjoint]
∧ [Wt ∪ Wi ∪ Wo = N ]
∧ ∀x∀d, p

[[〈d, p〉 ∈ Wt → φφe(x)(d, p) = φb(d, p)]
∨ [〈d, p〉 ∈ Wi → φφe(x)(d, p) = φx(d, p[φe(φs(p))])]
∨ [〈d, p〉 ∈ Wo → φφe(x)(d, p) = φx(d, p)]]]

where 〈d, p〉 ∈ Wt , 〈d, p〉 ∈ Wi and 〈d, p〉 ∈ Wo correspond
to T (d, p), I (d, p) and otherwise in the Definition 3.1 of
non-resident viruses respectively, and recursive functions
φb(d, p) andφs(d, p)denoteD(d, p) andS(p), respectively.

Since ‘φe is a total recursive function’ and ‘Wx = N ’
are

∏
2-predicates, ‘Wx = ∅’ is a

∏
1-predicate, ‘φx(z) =
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φy(z)’ is a
∑

1-predicate, and ‘Wx is a recursive set’ is a∑
3-predicate, so e ∈ Dn is a

∑
3-predicate.

Let R be an infinite recursive set whose complement set R

is also infinite. Let a ∈ N and S(p) be the selection function.
Consider the function

f (i, k, x, 〈d, p〉)

=



φi(d, p[φk(S(p))]), if 〈d, p〉 = a

φi(d, p), if 〈d, p〉 ∈ Wg(x)\{a}
↑, otherwise

where g(x) is the function in Lemma 4.1. By Church’s
thesis, function f (i, k, x, 〈d, p〉) is a recursive function.
Applying the s–m–n theorem to it, there exists a
recursive function b(i, k, x) such that φb(i,k,x)(d, p) =
f (i, k, x, 〈d, p〉). By the recursion theorem with parameters,
there exists a recursive function n(x) such that φn(x)(i) =
b(i, n(x), x), thus

φφn(x)(i)(d, p)

= φb(i,n(x),x)(d, p)

=



φi(d, p[φn(x)(S(p))]), if 〈d, p〉 = a

φi(d, p), if 〈d, p〉 ∈ Wg(x)\{a}
↑, otherwise

Let A be a
∑

3-set, it follows from Lemma 4.1 and the above
equation that

x ∈ A ⇒ [Wg(x)is a recursive set] ∧ [R ⊆ Wg(x)]
⇒ Wg(x)\{a} is an infinite recursive set

⇒ n(x) ∈ Dn

On the other hand,

x 
∈ A ⇒ [Wg(x)is not a recursive set] ∧ [R ⊆ Wg(x)]
⇒ Wg(x)\{a} is not an infinite recursive set

⇒ n(x) 
∈ Dn

Thus, it follows that Dn is a
∑

3-complete set.

Theorem 4.5. The sets D
f ixed
r , D

f ixed
p , D

f ixed
i , D

f ixed
s

and D
f ixed
c are

∏
2-complete sets, and the sets Dr , Dp, Di ,

Ds and Dc are
∑

3-complete sets.

Proof. The proof is similar to Theorems 4.3 and 4.4.

Theorems 4.3–4.5 mean that detecting viruses is
quite intractable in the following sense: the degree of
undecidability of the set of one kind of computer viruses
which have same kernel, is 2 (e.g., DJerusalem

r ); the degree of
undecidability of the set of one kind of all computer viruses
(e.g. Dr ) is 3. Furthermore, in the proof of Theorem 4.4,
if x 
∈ A, then the recursive function n(x) is not a virus by
our definition of viruses, because it has at least one branch
in which condition is not a recursive predicate. Thus, the
corollary below is obtained.

Corollary 4.1. If the set of all computer viruses is a∑
3-set, then it is a

∑
3-complete set.

For a given virus v, let the set of all programs infected by
v be Iv = Rg(v) = {v(x)|x ∈ N} [3]. If Iv is a recursive
set, then there exists a procedure deciding whether or not
a particular program is infected by virus v. Whenever a
program becomes infected by v, it can be detected by this
procedure and removed from the computer, i.e. the virus
v can be isolated from the computer environment. Set Iv

is a recursively enumerable set certainly, but does not have
to be a recursive set. The next theorem gives an instantial
computer virus v such that Iv is not a recursive set. In other
words, for this virus v, the strongest detecting procedure for
it can just pick up every program infected by v, but cannot
find all programs not infected by v.

Before giving the proof of the next theorem, we first state
a lemma that will be used in the proof.

Lemma 4.2. There exists a total recursive function h

such that φh(i)(d, p) = φi(d, p) and Eh is a
∑

1-
complete set.

Proof. Let j (i, x) be an increasing padding function, i.e.
for all i and x, φj(i,x)(d, p) = φi(d, p) (as in the proof
of Theorem 4 of [3]). Let g be a total recursive function such
that K = Eg , consider the function

h(i) =
{
j (1, g(x)), if i = j (1, x)

j (i, g(0)), otherwise

It is clear that φh(i)(d, p) = φi(d, p). Let c(x) = j (1, x),
since j (i, x) is a 1-1 function, it follows that

x ∈ K ⇔ c(x) ∈ Eh

i.e. K ≤1 Eh. Thus, Eh is a
∑

1-complete set.

Theorem 4.6. There exists a computer virus v such that
Iv is a

∑
1-complete set.

Proof. Let h be the function satisfying conditions in
Lemma 4.2. Applying the s–m–n theorem, let b(i, k) be
the 1-1 total recursive function such that

φb(i,k)(d, p) =



D(d, p), if T (d, p)

φi(d, p[φk(h(S(p)))]), if I (d, p)

φi(d, p), otherwise

By recursion theorem, there exists a function n such that

φn(i)(d, p) =



D(d, p), if T (d, p)

φi(d, p[n(h(S(p)))]), if I (d, p)

φi(d, p), otherwise

Substituting i by h(i) in the above equation, it follows that

φnh(i)(d, p) =



D(d, p), if T (d, p)

φh(i)(d, p[n(h(S(p)))]), if I (d, p)

φh(i)(d, p), otherwise

=



D(d, p), if T (d, p)

φi(d, p[n(h(S(p)))]), if I (d, p)

φi(d, p), otherwise
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Let v = nh, then v is a non-resident virus. Since n(x) is a 1-1
function, so Iv = Enh is not a recursive set. Otherwise, since

x ∈ Eh ⇔ n(x) ∈ Enh

it follows that Eh is a recursive set and contradicts
Lemma 4.2.

The method proving Lemma 4.2 comes from Adleman’s
paper [3] and the method proving Theorem 4.6 can be used
to prove that there exists any type of computer virus v such
that Iv is a

∑
1-complete set.

5. DISCUSSION

Definition 3.1 of non-resident viruses, which we take as
the typical definition of computer viruses, describes the
characteristic behaviors of computer viruses. But clauses
in the definition seem too restrictive, especially clauses (b)
and (c), which deserve some further discussion here.

The clause (b) in Definition 3.1 requires that T (d, p) and
I (d, p) are recursive predicates. It means that a computer
virus must make injury and infection in some definite
conditions (random activations of some computer viruses can
be thought as definite functions of 〈d, p〉 mathematically).
Computer viruses found up to now satisfy this restriction, but
there may be computer viruses whose injury and infection
conditions are semi-recursive predicates. This restrictive
condition is necessary in the proof of Theorem 4.4, thus, if
we can prove the theorem without it, then it can be removed
from clause (b) in all definitions of computer viruses.

Clause (c) in Definition 3.1, which requires that an infected
program imitate the original program at infinite points, is a
quite strong condition (even though most computer viruses
in the real world satisfy this condition) and excludes several
rogue programs. The proof of Theorem 4.3 makes use of it.
In fact, Theorem 4.3 can be proved in a weaker condition that
the infected program has infinite points satisfying branches
(ii) and (iii) in clause (a), namely, the set {〈d, p〉 : ¬T (d, p)}
is an infinite set. It is unknown whether Theorem 4.3 can be
proved without clause (c) or not.

Another important fact that needs to be known in
definitions of computer viruses is that there are two different
ways of infection. One is infecting programs first and then
executing the original program, i.e. φi(d, p[v(S(p))]), and
another is executing the original program first and then
infecting programs, i.e. φi(d, p)[v(S(p))]. We adopt the
former in our definitions of computer viruses and there is no
essential difference if we use the latter.

Corollary 4.1 looks strange at first glance because it
was proved in Adleman’s paper [3] that the set of all
computer viruses is

∏
2-complete. This variation comes

from the difference between our definitions and Adleman’s
definitions of computer viruses. It is known from the proof
of Theorem 4.4 that the reason that Dn is

∑
3-set is that

there exist recursive sets Wt , Wi and Wo which satisfy some
conditions, but this requirement is not needed in Adleman’s
definitions of computer viruses.

We only define some familiar and interesting kinds
of computer viruses in Section 3, however, other kinds

of computer viruses can be defined easily in this way
(sometimes, slight modification is needed). We give
illustrative definitions of some other kinds of computer
viruses as follows.

Definition 5.1. (Non-resident overwriting virus) A total
recursive function v is called a non-resident overwriting virus
if for all i,

φv(i)(d, p) =
{
D(d, p), if T (d, p) (i)

〈d, p[v(S(p))]〉, otherwise (ii)

A nonresident overwriting virus does not imitate the
original program. When injury condition T (d, p) is met, it
causes damage; otherwise, it selects a program and
overwrites it by itself. In this sense, non-resident overwriting
viruses still satisfy the requirement in clause (b) in
Definition 3.1 that no 〈d, p〉 satisfies T (d, p) and I (d, p)(=
¬T (d, p)) simultaneously.

Definition 5.2. (Interconvertible virus) The pair (v, v′)
of two different total recursive functions v and v′ is called an
interconvertible virus if for all i,

φv(i)(d, p) =



D(d, p), if T (d, p)

φi(d, p[v′(S(p))]), if I (d, p)

φi(d, p), otherwise

and

φv′(i)(d, p) =



D′(d, p), if T ′(d, p)

φi(d, p[v(S′(p))]), if I ′(d, p)

φi(d, p), otherwise

where T (d, p)(resp. I (d, p), D(d, p), S(p)) is different
from T ′(d, p)(resp. I ′(d, p), D′(d, p), S′(p)).

An interconvertible virus (v, v′) looks like it consists of
two different computer viruses v and v′. But, there is a
crucial distinction that when v infects a program, the result is
infected by v′(not v), and vice versa. The interconvertible
virus (v1, v2, . . . , vn) can be defined similarly. The
main dissimilarity between interconvertible viruses and
polymorphic viruses is that each form of a polymorphic
virus has the same kernel, but each component vn of an
interconvertible virus has its own different kernel.

Definition 5.3. (Compositive virus) The pair (v1, v2)

of two different computer viruses v1 and v2 is called a
compositive virus if and only if v1v2 is a computer virus
too, namely for all i, v1,v2 and v1v2 satisfy the following
equations respectively,

φv1(i)(d, p) =



D1(d, p), if T1(d, p)

φi(d, p[v1(S1(p))]), if I1(d, p)

φi(d, p), otherwise

and

φv2(i)(d, p) =



D2(d, p), if T2(d, p)

φi(d, p[v2(S2(p))]), if I2(d, p)

φi(d, p), otherwise
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and

φv1v2(i)(d, p) =



D(d, p), if T (d, p)

φi(d, p[v1v2(S(p))]), if I (d, p)

φi(d, p), otherwise

where T1(d, p) (resp. I1(d, p), D1(d, p), S1(p)), T2(d, p)

(resp. I2(d, p), D2(d, p), S2(p)) and T (d, p) (resp.
I (d, p), D(d, p), S(p)) are different from each other,
namely, viruses v1, v2 and v1v2 have different kernels.

Compositive viruses resemble combinatorial viruses in the
sense that they both create a new virus when their components
meet in the computer system. The difference between them
is that the components of a compositive virus are viruses
themselves whilst the components of a combinatorial virus
are not.

Definition 5.4. (Multipartite virus) A total recursive
function v is called a multipartite virus if for all i,

φv(i)(d, p) =




D(d, p), if T (d, p)

φi(d, p[v(MBR)]), if I1(d, p)

φi(d, p[v(S(p))]), if I2(d, p)

φi(d, p), otherwise

and

φv(MBR)(d, p) =
{
D′(d, p), if T ′(d, p)

φMBR(d, p[v(sys)]), otherwise

and

φv(sys)(d, p) =



D′′(d, p), if T ′′(d, p)

φsys(d, p[v(S′′(p))]), if I ′′(d, p)

φsys(d, p), otherwise

where MBR and sys denote master boot record and a system
call, respectively.

Multipartite viruses use a combination of techniques
including infecting documents, executables and boot sectors
to infect computers. The above definition is that of a typical

multipartite virus. Each of its infected programs infects
MBR (under condition I1(d, p)) or a selected program (under
condition I2(d, p)). The infected MBR employs a system
call to reside in memory when booting and then infect other
programs. Multipartite viruses are examples of computer
viruses which have more than one spreading mode and can
be described similarly.

We may define almost all kinds of computer viruses
in this way, however, there are some special kinds of
computer viruses that are still difficult to describe. For
example, there may be a computer virus that does nothing but
modify a .C file on computer. After the user compiles and
links the .C source file, the infected program is workable.
Extending our definitions of computer viruses so as to
describe all kinds of computer viruses is one of our further
research works.
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